首页 | 学校概况 | 以智启慧 | 以善树魂 | 以乐怡情 | 以健强体 | 和谐家园 | 文明在行动
 首页 > 班级风采 > 历届班级网页 > 2011届1班 > 学习园地
大数学家欧拉(1707—1783)
作者(来源):[暂无]    发布时间:2009-06-03

    近年来,一种名为“数独”的填数游戏风靡全球。这种游戏规则极其简单,玩法却变化多端,令全世界的男女老少为之痴狂。2004年,英国《泰晤士报》开风气之先,在报上公布“数独”题目娱乐大众。从那时起,短短几年光景,如今全世界大约有60个国家的350多家报纸几乎天天刊登“数独”游戏题目。近两年来,中国各地的日报、晚报后起直追,划出专门的版面,天天报道有关“数独”竞赛的消息,刊载“数独”题目。各国各大城市纷纷举办“数独”竞赛。在英国,“数独”竞赛上了电视台的黄金档节目。2006年在意大利举行了第一届世界“数独”锦标赛,获奖者被认为“智商超群”,在全世界备受瞩目。
  不少“数独”爱好者都知道,这种游戏的普及多亏了一位名叫戈尔德的新西兰人。此人曾在香港担任法官15年,1996年退休以后的一次旅行途经日本,在机场偶然发现介绍“数独”游戏的小册子。戈尔德立刻着迷,从此专注于“数独”游戏的开发推广,他也因此而发了大财。但鲜为人知的是,“数独”游戏本身虽非数学问题,但是其来源却是一种被称之为“拉丁方阵”的古老数学问题,最先对它展开研究的是18世纪传奇而又高产的大数学家莱昂纳德·欧拉。
  对于“拉丁方阵”的研究,在欧拉的学术范围内并不占据主要位置。这个问题源自于当年普鲁士国王腓特烈为他的仪仗队排阵。国王有一支由36名军官组成的仪仗队,军官分别来自6支部队,每支部队中都有上校、中校、少校、上尉、中尉、少尉各一名。国王要求这36名军官排成66列的方阵,每一行,每一列的6名军官必须来自不同的部队,并且军衔各不相同。问题看似简单,腓特烈绞尽脑汁却怎么也排列不出来,于是向著名的数学家欧拉求教。欧拉研究之后告诉国王,不必枉费心机,因为这个问题根本无解。欧拉之后,很多数学家开始研究“拉丁方阵”,并留下很多这方面的定理。

沪公网安备 31010402000741号